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A closed subspace F in a Banach space X is called almost Chebyshev if the set
of x € X which fail to have unique best approximation in F is contained in a
first category subset. We prove, among other results, that if X is a separable
Banach space which is either locally uniformly convex or has the Radon-Nikodym
property, then ‘“almost all” closed subspaces are almost Chebyshev.

1. INTRODUCTION

Let K be a nonempty subset of a Banach space X. For each x € X, we say
that y € K is a best approximation to x from K if

lx—y|=inf{lx —zl:z€K]}.

The set K is said to have property U, if best approximation in K with respect
to x is unique. K is called Chebyshev if it has property U, for each x € X.
When K is a closed subspace, we call it a Chebyshev subspace. 1t is known
that if X is strictly convex, then any finite-dimensional subspace is Chebyshev.
There exist separable nonstrictly convex spaces which do not have any
finite-dimensional or finite-codimensional Chebyshev subspace (e.g., L[0, 1]
[7,9]) and there are some without any infinite-dimensional Chebyshev
subspace (e.g., ¢ [3]). In connection with this, there arises the question of
whether a Banach space contains subspaces that are ““close” to Chebyshev
subspaces.

In [10], Steckin introduced the concept of “almost Chebyshev.” A set K is
called almost Chebyshev if the set of x in X such that X fails to have property
U, is contained in a set of first category. He proved that if X is a uniformly
convex Banach space, then every closed subset in X is almost Chebyshev.
In [3], Garkavi showed that if X is separable, then for any reflexive subspace
F in X, there exists an almost Chebyshev subspace (in fact, many) £ in X
which is B-isomorphic to F.
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In this paper, we will study the almost Chebyshev subspaces in certain
classes of Banach spaces: those with the locally uniformly convex norms and
those with the Radon-Nikodym property (RNP) [2. 5, 8]. The latter class
contains all reflexive Banach spaces, dual separable Banach spaces. or more
generally, dual Banach spaces which are weakly compact generated. Recentlyv.
Sundaresan [11] (cf. also [12]) showed that if (S, #, ) is a finite measure
space and if X is a Banach space with the RNP, then L (S. #. u. X) ulso
has the RNP for 1| <2 p < oo, Our main resuit is that if X is a separable
Banach space which is focally uniformly convex or has the Radon-Nikodym
property, then “almost all”* closed subspaces are almost Chebyshev (Theorems
3.5, 3.7, Corollary 3.8).

In Section 2. we introduce some definitions and lemmas. We prove the
main theorem in Section 3. Section 4 is for some remarks and open questions.

2. DEFINITIONS AND PRELIMINARIES

Throughout we will consider real Banach spaces: we use X to denote the
dual of X. Suppose K is a convex subset in X. a point x € K is called an
exposed point of K if there exists an f& X* such that f(x) - f(1) for all
ve K.y x. Itiscalled a strongly exposed point of K it is an exposed point
and satisfies: for {x,} © K. f(x,)—f(x). then x,-»x in norm. The
corresponding functionals to the strongly exposed points in K are called
strongly exposing functionals. We use K- to denote the set of strongly exposing
functionals of K.

A Banach space X is said to have the Radon-Nikodym properiy (RNP) if
for any given c-algebra # on a set 2, any finite positive measure p on 4.
and any X-valued measure m on # of finite total variation absolutely con-
tinuous with respect to u, there exists an X-valued Bochner measurable
function /% £2 — X such that m(E) = [pf dp for E € 4 (cf., e.g., [2]). One of
the geometric characterizations of such spaces. which Is relevant in here.
is that [8]: every bounded closed convex subset is the closed convex hull of
its strongly exposed points. In [5. 6]. it is observed that

ProrosiTion 2.1.  Ler X be a Banach space with the RNP. Thei for any
bounded closed convex subset K in X, the set of stronglv exposing functionals K:'
of Kis a dense Gy in X*.

A Banach space is called locally uniform(y convex if for any x in A" with
cxl =1 and e 7= 0, there exists 8 ~» 0 such that whenever " x - v - ¢
with [yl = 1, [ x -y T < 2(1 — 8). Tt follows easily from the definition
that each boundary point of the closed unit sphere S of a locally uniformly
convex space is a strongly exposed point of S.
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PrROPOSITION 2.2. Let X be a locally uniformly convex space, then S4
is a dense G5 in X*,

Proof. The above remark shows that every support functional of § s
also a strongly exposing functional. By the theorem of Bishop and Phelps
on support functionals [1], the set $' is dense in X*. That S is a dense G,
follows that for n == 1, 2,..., the sets

G, ={feX* :diam{xe S :f(x) > f|l — a} < 1/n for some a > 0}

are open and $4 = (., G, .

DernnTION 2.3, A Banach space X is said to have property (P) if for
each closed subspace F in X, the set of strongly exposing functionals of the
closed unit sphere of Fis a dense G; in F*.

Note that the Radon-Nikodym property and locally uniform convexity
are hereditary. Propositions 2.1 and 2.2 show that these two classes of Banach
spaces have property (P).

To conclude this section, we will prove a topological lemma. A Hausdorff
topological space X is called a Baire space if the intersection of any sequence
of open dense subsets in X is again dense in X. It is easy to show that any
complete metric space is a Baire space. Suppose X, Y are two sets and
suppose G is a subset in X X Y. For each y € Y, we use G,, , the y-section of G,
to denote the set {x e X : (x, y) € G}.

LEMMA 2.4. Let X be a complete separable metric space and let Y be a
Baire space. Suppose G is a dense G5 subset in X x Y; let

A=1{yeY:G,is adense Gsin X).

Then A is a dense Ggin Y.

Proof. We may assume that G is an open dense subset in X X Y, the
general case follows by taking countable intersection. Let G = {J; (U, X V))
where U, and V; are open subsets of X, ¥, respectively. Let {x,} be a countable
dense set in X and for each m, n, let N(x,, , 1/m) be the neighborhood of x,
with radius 1/m. Let

A'mn = U{VL (JI N N(X,n 5 ]/}’n) 7?, ,@}

We claim that A4,,, is dense in Y. For otherwise, we can find an open subset
Win Y such that W N 4,,, = @. Thisimplies (N{x,, 1/m) x W)NG = &,
contradicting that G is a dense set in X x Y. Note that each 4,,, is open,
hence 4 == Vm.n Amr is a dense G, in Y. It remains to show that for each
ye A, G, is a dense G in X. Indeed, for any m, n there exists U, % V;C G
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such that ye IV, and x e N(x,,, limnyn U; { - o), i¢c., G, is dense in X. We
complete the proof by observing that G, is open in X (for (7 is assumed open).

3. ALMOST CHEBYSHEV SUBSPACES

Let X be a Banach space. we use & to denote the family of closed subspaces
in X. For E. Fe 8, define

p(E, F)  maxisup inf -~ w - v sup il oy ey
wr e PR

1t is proved in [4] that (@, p) is a complete metric space. For £ £ e ®, we
say that E, F are B-isomorphic if there exists an isomorphism 7 from X onto
X with T(E) - F [3]. Let ©@(F) denote the family of closed subspaces in X
which are B-isomorphic to F. In {3]. Garkavi introduced another metric p
on O(F):

W

,)\

o Cy — nf \‘ - ,,\, S ,I,\, - y ax!. 7 T-1
PE.E) = 11:1t Isle) Py T clogmaxy 1, T4

where E. E' € ©(F)and the infimum is taken over all B-isomorphisms 7 from
£onto £ He also proved that ((F), p) is a complete metric space and that p

is stronger than p on G(F) (in fact. p -~ p): if £ is of finite dimension or
finite codimension in X, then p and p are equivalent.

LemmA 3.1.  Let X be a Banach space. let E. F be hyperplanes in X defined
by the functionals f. g€ X* ('[! gDy as E - N0, F g i0).
Then

(1) there exists an isomorphism T 2 X - > X with T(E) == F and
max{l, 7. T | A
() if0<e<<lband f— g, ~ e then p(E, F) -7 20¢;

(i) if X is a subspace of another Banach space X, . consider E. F as
subspaces in X\ ; then assertions (1), (ii) still hold.

Proof. Assertion (a) i1s proved in [3, Lemma 11]: the somorphism 7
X - X with T(E) - Fcan be chosen as

Tx - x ~-(flx) - glx)z, yve X,

where z satisfies

[B]
e

=2y =g(zy - 1 and
and 7-1is given by
T='x o x o- {glx) — fl):
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To prove (ii), we first estimate the quantity

X Tx i )
iTxT Tk v
Without loss of generality, assume || x| = 1. Hence
N o S B N ¢/ 6 Ry O
i nTx hx+ (f(x) — gx) 21!
A olx £ 0) — gzl /) — gl -z
T
1 — 4e [ — 4e
4e 4e
< 1 — 4e + 1 — 4e
< 16e.

Bv (1), we know that max{)| T'j|, | 7'} << 1 + 4e. Hence

p(E, F) < sup

-0

‘___x —_ E_I i It [ 1 —
%“ TxT Tl 1[ + log max{| T'l, | T [[}{ < 20e.
For (iii), it suffices to extend f — g on X; without increasing the norm
[3, Lemma Il]a].
We use S,(x) to denote the closed sphere of radius r and center at x. If the
center is 0, we simply use S, instead.

LEMMA 3.2. Let F be a closed subspace in a Banach space X, let x,€ X|F,
and let X, be the subspace generated by F and x,. Suppose there exists a
SJunctional fe Xg* such that f~40) = F and f exposes a point of the closed
unit sphere of X, ; then F has property U, for each x € X, .

Proof. Suppose'| f|| = 1 and fexposes the closed unit sphere of X, at y, .
For each x € Xp\F, we may assume that f(x) = r > 0 (otherwise, consider
—7f). We have

FNS,(x) ={x —ry.

This implies F has property U, , i.e., x — ry, is the unique point in F satisfies
x —(x —=rll = nf{lix —yll:yer]

ProOPOSITION 3.3. Let X be a Banach space with property (P) and let F be
a closed hyperplane in X. Then the set of Chebyshev subspaces in O(F) is a
dense Gy in (O(F), p).

Proof. Note that the metric § and p are equivalent in &(F). The conclusion
follows from the definition of property (P), Lemma 3.1(b) and Lemma 3.2.
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Suppose K, K, are bounded subsets in X. £ is a closed subspace in X,
and suppose x e X\F; we let
diam K, - supf. v - v ixove K.
K, Ky inflr s Ky K, - S K, K, S
and for each ¢ - 0. we define
Cla. x. F) (F - (1 - ax)ynys ..

It is clear that lim,. ,diam Cla. x, FY 0 f and only #f x iy a strongly
exposed point of § .. M X, where X, is the subspace generated by / and x:
the corresponding strongly exposing functionals are the f in X,” with
F-H0)Y - = F.In such a case, by Lemma 3.1. F has property U, .

LemMA 3.4, Let X be a Banach space aind let F be a closed subspace in X,
For each n, let
U, - {x, Eye X .. O(F):diam Cla, x. E) - 1/n for some a - 0.
Then U, is an open subset in X = O(F) where G(F) has the metric 1opology
defined by p.

Proof. let (x. E)e U, . Without foss of generality, we assume X I
Let
x o () ~ diam Cla. x. E).

For (x', EYe X .. O(F) with
Cx X alall6. BECET)  wl6.
We have
Cla. X' EYCWE ~ (- a)x) -+ Siw) N Sauena
HE (- Y)Y Sy ) S
Also
d(E-- -~y )N Sqay - Clas X0 EY - d(Sqa,n - SY
xj4d.
Hence

diam Cla, X', E') = diam(E -+ (1 -- a) X)) N Squgn) - diam S, ¢

diam Cla, x, E) - % ' _‘1
]‘ . /3;\,
n ' 4
|
B n

e, (x', E")e U, . This implies U, is open.
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THEOREM 3.5. Let X be a separable Banach space with property (P). Let
F be a closed subspace in X, then the set of almost Chebyshev subspaces in O(F)
contains a dense G in (O(F), p).

Proof. We first show that for each x € X, there exists a dense subset in
O(F) such that each member of the subset has property U, . Indeed, for
any E € O(F)and for any { > € > 0, consider the subspaces X; generated by
E and x (assume that x ¢ E, otherwise the result is trivial). Let f'e X;* such
that ! f1 = 1 and f~%0) = E. Note that X; also has property (P); there
exists g € X;*, a strongly exposing functional of the closed unit sphere of X;
with llgfi =1 and [[f — g|l < (20)~%e. Let E' = g Y(0), then p(E, E') < €
(Lemma 3.1) and E’ has property U, (Lemma 3.2).

For each x, let &, denote the set of those members £’ of @(F) which
correspond to strongly exposing functionals of the unit balls of the subspaces
generated by E and x, Ee O(F) (as above). Then Z, is dense in @(F). For
each a, let

U, = {(x, EYe X x O(F): diam ((q, x, E) < 1/n for some a > 0}.

By the remark preceding Lemma 3.4, we see that the x section of ﬂ;'f:_l U,
equals Z, . Hence Lemma 3.4 and the above imply that (,_; U, is a dense Gj:
for each (x, E) € (Vney Ua , E has property U, .

Note that X is a separable Banach space and @(F) is a complete metric
space, Lemma 2.4 implies that there exists a dense G; subset & in O(F) with
the property that for each F € 9, there exists a dense G subset Dx in X such
that for xe D, (x, E) e ('}:f:l U, . This means that each member in & is
almost Chebyshev and we complete the proof.

By using the same proof as Lemma 3.4, we have

LemmA 3.6, Let X be a Banach space and let @ be the family of closed
subspaces in X. For each n, let

V, ={(x, F)e X X @ : diam C(q, x, F) < 1/n for some a > 0}

Then V, is an open subset in X X 0.

THaeorem 3.7. Let X be a separable Banach space with property (P).
Then the family of almost Chebyshev subspaces contains a dense G5 in (0, p).

Proof. For each xe X, E€ 0, and € > 0, we can find a closed subspace
E’ which is B-isomophic to E, with property U, and g(E, E') <  (the first
part of the proof of the last theorem). Note that p(E, E) < §(E, E). This
implies that the set of closed subspaces with property U, is dense in . Now
consider the dense G, set ﬂ;’sl V, where V, = {(x, E)e X x @ : diam
C(a, x, E) < 1/n for some a > 0}. By exactly the same argument as last
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theorem, we conclude that the set of almost Chebyshev subspaces of X
contains a dense G, in (6. p).

COROLLARY 3.8. Leit X be a separable Banach space satisfving either
(a) X has the RNP, or
(b) X has a locally uniformiy convex norni.
Then
(1) for any closed subspace F, the family of alimost Chebysher subspaces
which are B-isomorphic to F contains a dense G in ((F), p),
(1) the family of almost Chebysher subspaces in X coniains a dense G,

in (8, p).

4. SOME REMARKS

Theorems 3.5 and 3.7 partially generalized the results of Garkave m
considering the reflexive subspaces of separable Banach spaces and the
weak™* closed subspaces of separable conjugate Banach spaces. One ol his
examples (c,) says that there exists a separable Banach space which does
not have any nonreflexive almost Chebyshev subspace. Hence some restrie-
tions on the subspaces or the Banach space are essential, The only place we
use the separability is to prove Lemma 2.4. The lemma is not true without
that condition. We are interested to know whether Theorems 3.5. 3.7 will
still hold for Banach spaces with property (P) in general. In particular.
are the theorems true for any reflexive Banuch spaces ?

It is proved by Steckin [10] that in a uniformly convex Banach space, every
closed subset is almost Chebyshev. (Note that the problem is trivial for closed
convex sets in such spaces). Alsa, there are examples that there is 4 separable
reflexive strictly convex space, and that the above result does not hold [13].
1t is natural to ask: For what kind of spaces is it true that every closed subset
is almost Chebyshev ? Will it be true in a lecally uniformly convex reflexive
Banach space? Since Banach spaces with the RNP are characterized by the
property that every bounded closed convex set is the clesed convex hull of
its strongly exposed points, it is also interesting to consider the best approxim-
ations for bounded closed sets in such spaces. Indeed, in [13], Edelstein prove
that if K'is a closed convex set in a Banach space with the RNP, then the set
which admits best approximation in K is a weakly dense subset in X.
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